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Abstract -

The fundamental problem of smoothing and differentiating of noisy images has been
previously approached in two different ways: 1) Minimization of a smoothness tunc-
tional, a theoretically well understood procedure but one that involves the solution of
a very large system of equations involving all the pixels of the image, for each image.
2) Use of small scale, ready made filters for local smoothing. The process is computa-
tionally cheap but generally ad hoc and not very reliable. This paper offers a way to
combine the advantages of the two approaches. We construct general filters for local
windows of the image, derived from maximization of smoothness or "regularizationo
theory. In this way the theoretically robust minimization process becomes suitable for
practical implementation, possibly in real time, and is readily adaptable to local image
properties. Filters for more reliable derivatives are also being derived.
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1. Introduction

Smoothing of noisy images has preoccupied research in vision and image processing ever

since its beginning, and a variety of methods have been developed that partly overcome the

problem but leave much to be desired. Strictly speaking the problem is underdetermined

since there is no way to distinguish with certainty between data and noise, and to inter-

polate between data points, so some reasonable assumption must be made. Of course a

theory with weak extraneous assumptions is preferable, but one often finds it unavoidable

to make rather strong simplifying assumptions in order to restrict the solution space and

improve computational efficiency. Thus with current methods one has to trade off gener-

ality for efficiency. In this paper we show that one can relax the need for this trade-off to

a large extent and achieve a reasonable degree of both generality and efficiency.

We first brict'y review two approaches that represent different choices in this trade-off

and then present E theory that combines them.

The minimum abu mptions approach consists of a minimization of some cost (or en-

ergy) functional E, which is a function of the unknown smoothed image f and the data g.

(f, g may be grey levels, depths, or any interesting function defined at image coordinates

x.) The functional can be expressed generally as

E= f V(f,g) + J S(f)

The first term is a metric V that measures the distance between the desired (minimizing)

shape f and the data g; the smaller the better. The second term integrates a smoothing

function S(f), which contains derivatives or curvatures of the shape f. This generalizes

the idea that Grimson 119811 called informally "no news is good news", i.e. the surface's

departure from smoothness is minimal, subject to the requirement of small distance from

the data. The exact forms of V, S depend on the theory. The energy minimization principle

was used by Horn 19831 for curves and by Barrow and Tenenbaum 19811 for interpreting

line drawings. Poggio et al. ]19871 have put this principle in the more rigorous mathe-

rnatical framework of the "reguilarization theory" of Tikhonov and Arsenin. This theory



shows that indeed, iunder weak and general assumptions, the smoothing term f S turns

an ill-posed problem into a well-posed one in the sense of Hadamard ([19231), i.e. an

underdetermined problem turns into one that has a unique and stable solution. Blake

and Zimmerman [1987) studied the convergence and other properties of various cost func-

tions, Weiss [1986] investigated cost functions that adapt theimselves to local properties of

the shape, and Terzopoulos [1988) studied implementation methods based on this gcreral

framework.

In implementing the method, each pixel is assigned aii unknown variable (or several

unknowns) such as the depth of the image at that point; the cost function is calculated

in terms of the unknowns. Minimizing the cost function leads to equations for these

unknowns. In this way one obtains a large set of coupled equations involving all the pixels.

Solving the system for 3-D shapes has shown the validity of the basic approach but also

the prohibitive cost, even with acceleration methods such as multiple grids. Furthermore,

since the solution has to be done for the whole image at once, numerical problems arising

from a small area can impede the whole solution. Obviously one would prefer a more

local solution, that involves fewer pixels at a time and is not sensitive to every numerical

ill-conditioning arising from anywhere in the image.

The other approach to smoothing uses filters that are calculated in advance for a

general image, and are used by convolving them with the particular image at hand. The

filter is usually only a few pixels wide, making the convolution efficient. Gaussian filters

or derivatives of them (Marr, [1989)) are the most widely utilized. Among many other

examples, filters utilizing basis functions have been used by Hueckel [1973] an Hu.mmel

[1979] in connection with edge detection (i.e. detecting non-smoothness), and by Haralick

]19841 for derivatives. Recently, Meer and Weiss [1989 derived polynomial filters, based on

a least square method, for smoothing and differentiation to high order. Another group of

local filters is based on statistical "robust estimation" (Besl, [1988)). While they are very

good at rejecting outliers, they are not always as good in dealing with the rest of the data,

and for smoothing images with relatively little hoise they are sometimes even worse than
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the Gaussian. Besides, these filters are computationally intensive, requiring an iterative

process.

While useful in many applications, many of the local filters are based on rather ad hoc

assumptions, so it is not surprising that their output is sometimes too sensitive to both

the input data and the particular details of the filter used. Often they contain internal

parameters that need to be carefully fine tuned for each application in order to achieve

a result that looks reasonable to humans. It is clear that the need exists for local filters

based on a solid theoretical foundation such as the regularization theory discussed earlier.

Calculating derivatives has always been a desirable but very difficult goal in vision.

Global regularization theory could be used for that purpose, but then the computational

cost would increase even more. The available local filters have proven even more unreliable

for derivatives than for smoothing. Our method applies differentiation by combining the

reliability of the regularization method with the efficiency of the local filters.

We combine the two methods in the following way: we define a minimal curvature cost

function and apply it to a basic "unit" image, i.e. an image with the value 1 at its center

and 0 elsewhere. The continuous smoothing functional is translated to the discrete mesh

using the "finite element" method, with bivariate Hermite splines as the basic interpolation

functions. Minimizing the cost function, we obtain a smoothed version of the unit image.

We use this minimal curvature version as a filter or mask to be convolved with any given

image. We show that this intuitive filtering process can be justified mathematically by

using a discrete equivalent of the Green function method used in solving differential equa-

tions. While most of the treatment involves the discrete case, we do study some properties

of the continuous analog.

While these filters have merits in their own right, they can be of even greater useful-

ness within a larger context. The above treatment, like other treatments throughout the

literature, assumes that the cost function has constant parameters. In a common physics

analogy, the cost function is likened to the bending energy of a flexible plate that represents

the surface. These methods fails when a surface has discontinuities, or sharp edges. A
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usual remedy is to break the surface into smooth parts divided by the discontinuities, but

this immediately raises the question of what is a discontinuity and how to determine it.

Various ad hoc and not very satisfactory attempts have been made to solve the problem.

Our further goal is to solve the problem by varying the parameters of the cost function

in an adaptive way that will fit the local properties of the surface. A surface with rapid

changes in its curvature needs a more 1exible "plate" to describe it than does a slowly

changing part of the image. By changing the physical parameters of the plate acccrding

to the local nee,s of the surface we can obtain good smoothing properties in every part of

the surface without having to decide prematurely what is a discontinuity.

The problem was hard enough to solve with constant parameters because of the large

system of linear equations that it involved Non-constant parameters wouid -.: ke thc

problem nonlinear and almost beyond reach. However, our reduction of the solution to a

simple cc'wolution with filters not only makes the linear solution very easy, it also opens

the way to a nonlinear solution. All we have to do now is to vary the parameters of the

filter during the convolution in accordance with the local properties of the surface we deal

with. (In a way, it is a "context-dependent" operation.) In a subsequent paper we will

examine various ways of relating the filter parameters, or the flexibility of the smoothing

plate, to the local average curvature of the surface.

In the next sect'ons we calculate the cost function as a function of image variables

by using 1-D basis functions, substitute particular spline basis functions, derive general

solutions and put them in the form of a convolution.

2. The Cost Function

In this section we define the cost function to be minimized and express it in terms of

unknown image variables. This is done by expressing the 2-D image by general basis

function, whose coefficients are the unknowns.

The function to minimize is

E / / w(x)(f(x) -g(x)) 2 dx + (V fh + +Y + Y)
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where f is the smoothed (unknown) image, g is the data and w are weights.

The first term is simply a measure of the distance between the data and the smoothed

image, which is a quadratic norm with weights. The second part is the smoothing, or

regularizing term. This is the term used in the Tikhonov and Arsenin theory to stabilize

the ill posed problem, and can be understood by a physical analogy to a thin plate. The

smoothing term, with its second derivatives, would represent a bending energy term of the

plate, which we wish to minimize along with the distance of the plate from the data. The

coefficients A', with a = xx, 7y, yy, are the regularization coefficients which determine the

amount of smoothing. The bigger the smoothing term, the smoother, but less conforming

to the data, the output image will be. If A" = A -Y = XzY/2 one has the simple isotropic

bending plate (Landau and Lifshitz, [1959]). In our subsequent work we will be interested

in A', w which are functions of both the coordinates and the direction.

We now have to discretize the problem. We could represent the derivatives in the

smoothing term by finite differences, but our experience (Weiss, [19861) and others' shows

that the finite element method is more stable, besides producing a smooth shape even

between the pixels. The idea is simply to represent the surface f(x) as a linear combination

of basis functions 4,(x):

f(x) Zfi)t(X) (2)

where fi are unknown coefficients and 10j(x) are given basis functions. The cost function

can now be written as

fEz E A- (X) (f, aO) 2 dx + ff Z (X)(ft, (X) _ g (X))2 dX

Minimizing with respect to a particular coefficient f- we obtain

This can be written in matrix form as

Kjj3 = C, (3)
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where the vector Gj represents the image data

j = f w(x)g(x (x)dx (4)

and Kij is the analog of a "stiffness matrix" of the. plate:

K1, - JJ {w ,bj + A(~ 1 (~) dx

The first tciin above can be called the "mass" term K9, and the others are the

bending terms, K'. With obvious definitions one can now write

Kij = Koo + KZZ + K y + K YY  (5)

The goal of finding the unknowns fi can now be accomplished by solving the linear

system of equations (3) for the unknowns fi. For a large system this is easier said than

done and we will later describe an efficient direct method of solution. This method can be

applied directly in the case of sparse data, in which the number of unknowns is relatively

small.

3. Reduction to 1-D

So far we ha,,e dealt with general basis functions. Since all functions in 2-D can be

expressed by basiz functions that are products of 1-D functions, we will express Kij in

terms of such simpler functions. Thus we introduce the I-D functions Ok (X), ¢k (y). For the

decornpos ion one has to use different i, j indices for the x and y functions, i.e. it,, iy, j, jY.

The indices of the stiffness matrix i,j can be expressed as some convenient functions of

these 1-D indices:

i = i(i., iY)

j = j(Jz,Jy)

(7)
fi = JX , x(
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We will be able to express the above stiffness matrix terms in terms of three basic 1-D

matrices, that need to be calculated only once for any given basis:

K9 I Oi. (x)€j. (--)dz

,'. - 9. O i. (x) -Oj. (x) dx (8)

K'? I = Oi,¢ (X)a-'Oj, (x)dx

The matrices involving y are similar.

We will now express the terms K °", K' with a = xx, xy, yy in terms of the above basic

matrices. The coefficients w, A have been general so far, but to perform the decomposition

we have to make simplifying assumptions about them. We assume that they are constant

within the common support of Oi, j. We will later specialize to highly localized basis

functions ti, of the size of a pixel, so the approximation will be justified. These coefficients

become functions of i,j rather than x so they can be put outside the integration.

We thus have for the mass term

K °  j =i / w (x ) Oj(x ) dx( f j ( ) j ,( y ) d y  (a

I w .
.  ty,

E'tr thp hendinp terms we have, first for the x direction

= AxK 2  K 0

ij - ' " ,jy

and similarly for y derivative
K AY oK K 2  (9c)
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For the mixed term

- iJ (4)O0k (x)dx J ayj (y)Qyk,,, (y)dy (d

AX'YKi K 1
.j t'7. 

t jy

Substituting these expressions in the expression for the total stiffness matrix, eq.(5),

completes the decomposition into 1-D quantities. In the next section we will specialize to

specific basis functions.

4. The Basis Functions and the Stiffness Matrix

The general expressions for the stiffness matrix found in the previous section can be used

with a variety of basis functions. Meer and Weiss 19891 have used various orthogonal

polynomials for the special case of A' = 0, i.e. no smoothing term. This case amounts to a

simple least square fitting, and it was easily solved analytically because the stiffness matrix

is diagonal. We obtained good smoothing prope-ties but the derivatives were not as stable

as we would like. Dierckx I used cubic splines for the above special case, and obtained

a system of equations that needs to be solved. In this paper we use spline functions with

narrow local supports, i.e. finite elemcnts, to make the solution more flexible locally. We

then eliminate the need to solve a system of equations by deriving filters.

Because of the local support of thc finite elements, the geometry of the image points

plays an important role. There are many off the shelf prograrm. for solving engineering

p)oLlem9 ,ith finite elements. In a general finite element code one has geometrical "nodes",

i.e. points for which data is available or calculated. They are input tik.nually so that a

wide range of complicated geometries can be handled. We are interested here in a simple

geometry that can be dealt with automatically, so we specialize to a squcdt: domain with

a rectangular grid, the nodes being image pixels. Our cost function is somewhat different

from what can be found in the ready made codes. For these reasons, after experimenting

with some of these programs (ANSYS, ADINA) we were led to writing our own program.
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The sti'ess matrix elements found from (9) all involve products of two 2-1) basis

functions, each of which consists of two I-D splines, and each node has several of these

functions, so a good bookkeeping system becomes important.

Since the I, functions are nonzero only in neighborhoods of pixels, it s convenient to

enumerate chem in accordance with the enumeration of the pixels. The pixels are arranged

on - rectangular grid and are denoted by m:, my (going from 1 to maxima of M,, AI.) At

each node (pixel) we have a small number of basis functions (D, so the indices ,,sv are

used to distinguish among basis functions belonging to the same pixel. These two indices

enumerate the 1-D spline lunctions whose products make up the 2-D basis functions. Each

basis function has two equivalent sets of indices: While the i (or j) indices enumerate all

the functions in a linear list and are used for the rows and columns of the stiffness matrix,

the m, s indices reflect the geometry of the problem.

A basis function can now be written as Di, or as O, =,m,,8.,, or for brevity as

Similarly for its coefficient fi. The 1-D functions can be written as dm=,a,, m,-,.

Fig. 1 shows a convenient way to relate to two kinds of indices for a 2 x 2 pixel

example. Morc generally we can establish:

m, {', M.} node coordinate

rn 1 { 1, A } node coordinate

m (rry - 1)M, 1- m, node number

sz sY. C 0, I} intra node indices (0

S 2s, s-

I .- 4 (m I) -s-. I 4(my - 1)A,.+ 4m, + 2s, + sYv I

j x 4(rn' 1) . s' .}- I z4(m, - 1)M7 - 4m" t 2s' i s' + 1

(We note that rm',s' are not new indices, they are used to determine the column j of the

stiffness matrix while rn,.s determine i.)
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One can get a good grasp of the basic process described here without a detailed

understanding of the plethora of indices use-I, but the intention here is to have enough

detail for an actual implementation.

We now introduce the basis functions themselves. Taking the distance between pixels

to be 1, we define two basic functions as zero outside the interval [-1, 11, while inside theN

are the two cubic Hermite spline polynomials (Fig 2):

O0,o(x) - (jx - 1)'(2jxj + 1)
(11)

X= 1)2

To form the whole basis these are shifted so they are centered around each pixel, in both

the x and y directions, i.e.

om, W = ( o, (x - M.) (12)

f Z fi(rnMMy 8, )Om,, O(Xmy , (y) (13)

In this way we get functions with loca! support in a rectangular neighborhood around

each pixel, extending only up to the next pixel. The Hermite polynomnids are known to

have good properties of convergence and reliability of interpolation up to second order

derivatives (Strang and Fix, f19731).

The first of the functions in eq. (11) has a value of 1 and a zero derivative at the

center of the interval, while the second has a value of zero and a derivative 1. At the ends

of the interval both the values and the derivatives vanish, so there is no (direct) influence

on the value of the neighbors. Thus the coefficients fj in the sum (13) are in fact values

of the function far, : its derivatives. It is easy to see that

fi(,,m,OO) - f(mr., M')

(1 4)
f i( m . ,, , ) a y f ( rn , rnU )

f,(m'", , 1) -O:af (r= IMY)

For higber derivatives, higher order splines are needed and more of them to a node, but

the local character will not change.
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Having taken care of the bookkeeping of the nodes and associated basis functons, we

now have to perform the integrations of eq. (8). Each element of these matrices involve

an integration over a pair of basis functions with a common support. Since the supnort

is local, only a few of the pairs will have a common support. Wc can divide the imagc

intc ectangular tiles, with a ncde at each corner. Each tile supports only a small number

of the basis functions. Thus one :an save effort by going over all tiles and collecting the

contribution of each to a xnati ix element of K', rather than going over all pairs i, j. This

is known as the "assembly" )rocess. (Fix and Strang, [1973], Bathe, r1982].) From the

bookkeeping point of view, some indices are replaced by ones with a much more limited

range:

Mr,m_ - rz + Amn, m., + Am'

my, im -, my + Amy, my r Am'

Y y

where rn,, my are the coordinates of the bottom left node and Am, Amy are 0 or 1. The

general indices i,j can be derived from them with eq. (10):

i = i(m, + AMr, my + Am, s, s)

To assemble the matrices we now go over the indices m.,, my, Am,. Amy, Am' Am', S, 8,X y

instead of m,rmy, rn 'MY s .

Furthermore, since all tiles are similar it is enough to integrate over one tile and use

the results in the others. The actual integration can be done in 1-i. We use the one-tile

1-D indices:

i,=2Am, + sX +- 1

-x 2Am', + 6, + 1

i = 2Amy- +y , I

jy = 2Am' - s,' + (16)
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which run from 1 to 4. The factor 2 above come from the fact that there are currently two

basis functions per node.

Performing the integrations (8) on the one-tile 1-D case we obtain the 4 x 4 symmetric

matrices, for an interval of length h

156 22 54 -13
kPh h 4 13 -3

t"3z -- o J 420 156 -22
4'

/36 3 -36 3

f0haqsa f I 4 -3 1

= -=30h 36 -3

12 6 -12 6
of Ixk9X5 4 -6 2

12 6

and similarly for y.

The above quantities are the contributions from each tile to the matrix element.; of

Kn (n-- 1,2,3):
AKni %. j (1

and the addition to the total stiffness matrix is now given by eqs. (5,9) as

(18)

These terms are accumulated in the general stiffness matrix Ki 3 . There is usually a

contribution from more than one tile to each element of K1j.

We now summarize the process of assembling the stiffness matrix as follows:
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For all image pixels mm, for all Am.,,An, Am',Arn equal 0 or 1,

and for all t equal 0 or 1 do:

Calculate the one-tile indices i., , iy,jy, eq. (16).

Retrieve the appropriate element of the 4 x 4 matrices ... etc.

Calculate the stiffness matrix indices ij, eq. (10).

Calculate the contribution AK-j from eq. (18) and add to the appropriate

array element Kjj.

End do

This stiffness matrix contains all our assumptions about the geometry and smoothness

of the problem. We are left with the algebraic problem of solving the system of equations

that it represents, eq. (3). This is dealt with next.

5. Reducing the Solution to Small Filters

In theory, solving the system of equations (3) should be a straightforward application of

algebraic methods. However, an image with 1024 x 1024, or 106 pixels generates a stiffness

matrix with 101" elements, and it would be a great waste of resources to deal with it in a

straightforward way even if it could be done, which is doubtful. Fortunately, the matrix

is very sparse, since only a few of the pairs of basis functions have a common support (i.e.

the integrals (8) are non-zero). From eq. (10) one can derive the pairs i,j that have a

non-zero element. Previously the system was solved using iterative methods (Terzopoulos

[1988]). These methods are very efficient in use of memory, but many iterations over the

whole image are needed to get close to convergence. Direct methods give a closed form

solution but may need sophisticated hashing techniques to save memory, depending on the

structure of the matrix. (Ortega, [1981].) In our case this structure is quite simple, being

banded along the diagonal, so storage is quite simple. Direct methods are now used in

most finite element codes (Bathe, [1982]) and we adopt one here.

In this section we show that the one can solve the problem by solving for small windows

of the image, provided that we find a general solution for any small image. For this process
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a direct method becomes even more attractive, as the small window makes it very easy to

apply.

We begin by describing briefly the continuous analog of the method. We are given

the differential equation, which we keep in 1-D for simplicity:

D.f(x) =g(x)

where D, is a differential operator, f(x) is an unknown function and g(x) is a given term,

e.g. data (the inhomogeneous term). Now, instead of solving for each g one can solve for

particularly simple data, i.e. delta functions, and build a general solution on this basis.

Thus we define the "Green function" h(x,t) as the solution of

Drh(x,t) = 6(x - t)

The general solution is now given by

f = J h(x,t)f(t)dx

Proof:

D~f = J D~h(x,t)f(t) = 6(x - t)f(t) = f( )

If all the coefficients in the differential operator are constant, then the equation is shift

invariant, i.e. we have the same Green function around each point t:

h(x,t) = h(x- t)

and thus the general solution above becomes a convolution.

We will later find the Green function for the continuous version of our smoothing

problem.

We return now to our discrete case. We have (eq. (3)):

ZKi 1 f, -C,

14



The indices i,j are functions of the geometrical node numbers m,8 (eq. (10)). We

have

i i(m, s) j j(m', s')

and s enumerates the basis functions at each node. So we can write eq. (3) as

Z Km,m',$,B' fm'l,a, = Gm,a

We can simplify matters if we assume that the data is concentrated in the node, a

standard practice. From eqs. (4,7,11) one can see that Gin,8 vanishes for all s except s = 0,

in which case it is equal to the given data at the pixel m, Gm =- G,,o. Thus the solution

for the above equation vanishes for s - 0 and we can limit ourselves to the solution of

E Km,mi ,O,a fin' 8 Gm (19)

In analogy with the continuous case we will now look for a solution to a system of

equations with the data being a Kronecker delta rather than a general G:

Kin,m,,o,,,h(m',.', n) = .mn (20)

where n = n(n,,ny) is an arbitrary node of the grid.

The solution of (19) for general data is now

E h Z h(m,s,n)Gn
n

Proof:

Kmn,m',jo,a' S h(m',s', )G - > 8 mnGn Gm

In dealing with images we observe that our problem is shift invariant in the node

number m, because we constructed the finite element formalism in this way, i.e. the

same basis functions just shifted unchanged from one pixel to another. (We assume for
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the moment an unbounded image, analogous to the continuous case.) Thus our Green

function h loses one variable and becomes a filter h(m - n, s) which is convolved with the

image:

fr= S h(m - n,5)a. (21)
n

Furthermore, it is reasonable to assume that the quantities at pixel m will not be

influenced very much by the data in a pixel n which is far away from m. Therefore the

summation above does not need to be carried out over the whole image but can be limited

to some rectangular window extending N., Ny pixels around m. Thus we can finally write

the solution in term of the filters as:

fm. MYm, am = Y h(m. - n,,my - ny,sx,-sy)an.nm (22)
n,=-N N

Thus, the solution at the pixel mx, my is given by a known mask applied to a window

around that pixel.

One can see from (22) that there is a separate filter for each s, sy, with eq. (14)

giving the meaning of each one. Thus,

h(m.,,my, 0,0)

will yield the smoothed function f itself, while

h(m, my, 1, 0)

is the x derivative, and the combinations (0,1), (1,1) yield the y and x,y derivatives

respectively. Since convolution is associative, we can concateniate two first derivative filters

to obtain one for the second derivative:

a~f(m) = h(m, 1,0) G (h(m, 1,0) 9 f(m)) = (h(m, 1,0) 9 (h(m, 1,0)) ® f(m)

so that the filter for the second derivative is

h(m,2,0) = h(m, 1,0) 0 h(m, 1,0)
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and similarly for other derivatives. There is no point, however, in continuing the process

beyond the order of the spline used: we need higher order splines than our cubics to obtain

third and fourth derivatives.

In conclusion, we have reduced the regularization problem, which led to a large system

of equations, to convolutions of the image with small filters. The filters can be derived

once and for all (for a cost function with given factors) by solving eq. (20) for a small

window, a relatively easy task. The results can be stored for use with any input images.

The next section summarizes the solution method used for the window.

6. Solving for the Filters

Deriving the filters amounts to solving the system of linear equations (20) for a small

window. In principle, this could be done by the standard method of Gaussian elimination,

but then one has to deal with the recurring problems of ill-conditioning and numerical

instabilities. A method applicable to symmetric positive defir.te matrices is the Cholesky

decomposition (Ortega, [1981]). It guarantees well conditioning and numerical stability.

We describe here a modification for a general symmetric (non-singular) matrix. A stiffness

matrix of a stable physical system is always positive definite. In our case it is at least

symmetric.

We start with the decomposition of the symmetric matrix into a product:

K = LDLT

where L is a lower triangular matrix having l's on its diagonal

L21 1 ... 0

L,jI L,2 ... I

LT is its transpose, an upper triangular matrix, and D is a diagonal matrix. Explicitly:

Vt

K,3  E LkDkLjk
k=1
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where n in the matrix size, in our case the total number of unknowns in the image. We

further assume, without loss of generality, that the matrix is banded with p non-zero

diagonals above and below the main diagonal. This is the case for our sparse stiffness

matrix. The following iterative algorithm, based on the above summation. can be verified

by induction:

For j = 1,...,n do:

q .iiax(ij p)
3-I

Dk~ *- IC,, - L ,Dk

k=q

For i j + 1,...,min(j +p,n) do:

r +-- max(1,i - p)
j-1

Lij +- (K1, - EKikKjkDk)/Dj
k=r

End do

End do

The output elements Li, also form a banded matrix and can be conveniently stored

by overwriting the corresponding input elements Kij as soon they are calculated. The

diagonal matrix elements Dk can be stored in place on the l's in L. They also happen to

be the eigenvalues of the matrix.

We can see from the limits of the iterations and the summation that the decomposition

is of linear complexity in n and O(p2 ) in the bandwidth, i.e. it is O(np2 ). For a non-banded

matrix we have q = r = 1 and the complexity would be n 3 . Thus if the bandwidth is much

smaller than the matrix dimension one obtains great savings.

For given data G the system of equations

Kf =G

can now be solved in two stages, with an intermediate solution vector f', as follows ("back

substitution"):
Lf'= G

(24)
DLT1 f
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The first term can be written explicitly as

: Likf = Gi
k

As before, by separating out the last term of the sum one obtains the iterative algorithm:

For i = 1,...,n do:

r - max(1, i - p)
i-1

f, - Gi- ELikfk'

k=r

End do

Similarly, the second stage is

Di ELkifk fA
k

yielding the "mirror" algorithm

For i = n,..., 1 do:

r4- min(1,i + p)
r+1

f - flD, - 5 Lkifk
k=r

End do

For a banded matrix, the two stages are O(np) in complexity, while for the non-

banded case (r = 1) we have 0(n 2 ). Thus the main effort is in the decomposition stage,

with O(np2 ). In our implementation the band width is proportional to the window side

N and the matrix dimension to N 2 so we have a total of O(N 4 ). A window with N - 10

takes a few seconds for a VAX to solve.

Finally, we have to substitute the appropriate data G in the above algorithms. Of

course the algorithms could be used with the whole image itself as data. That would be

useful for sparse data with a limited number of unknowns. In deriving the filters, however,

the data is "unit" images (Kronecker bs) according to eq. (20). Denoting the central pixel

in a window by n,, ny we want to solve the equation
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The solution can be broken into S parts, one for each 5 = 1,... , S, corresponding to our

S filters (22). Algebraically, we have obtained one row of the inverse of the matrix and

there is no ieed to invert the whole matrix.

7. The Continuous Approximation

For the continuous case the functional (1) can be minimized using the Euler-Lagrange

equations of the calculus of variation, yielding the fourth order differential equation

A+ (×) = g(x)
w

In cylindrical coordinates the rotationally symmetric Green function involves No(N/ir), i.e.

Bessel functions of the second kind with complex variable. The function diverges at zero

and its asymptotic behavior at infinity is unclear. In Cartesian coordinates we can learn

ithe mai.n featuL.. of tlhe filters by examining the solution of the 1-D equation

Xd4 )(x) = (X

where we have defined 4a 4 = A/W.

The Green function is

1 -1- x-th(x - t) = 2ae-2a cos 2a

Substituting h(x - t) in the above equation, it is easy to verify that the left hand side

vanishes for x $ t, and that its integral has a jump of I over the discontinuity at x = t,

(due to the jump in the third derivative), making it a delta function. The parameter a

was chosen so that the Green function will behave generally like a Gaussian so that the

two can be compared. Fig. 3 shows the Green function in a solid line and the Gaussian.

Fig. 4 shows their respective derivatives. These are used in convolution with an image

to obtain an image derivative. We see that one major difference is in the central parts

of the filters. The bending Green function is less smooth at the top, and its derivative is

discontinuous. This can make a difference for features smaller than a or high frequencies.
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Indeed, the Fourier transform of the filters (Figs. 5,6) shows that the Gaussian filters,

particularly the differentiation filter, attenuate higher frequencies more strongly than the

bending filter. Another difference is the "bump" in the Fourier transform of the Green

function, resulting from the cos(x/2u) factor. Thus the function looks somewhat like a

band-pass filter. A combination of such filters with different scales a may be tailored to

provide a flatter band-pass filter between given frequencies, something that can't be done

with the Gaussian. (The expressions depicted are e -
,

2 /2 and (2a 2 + 1)/(4a 4 + 1).)

8. Experiments

We solved the linear equations (20) for various window sizes and convolved the resulting

filter with real images. Fig. 7 shows a cross section through the center of the smoothing

filter, and Fig. 8 does the same with the filter for the first derivative. Fig. 9 shows a

smoothed image, and Figs. 10,11,12 are derivatives dZ,8,OYJaY respectively. While any

effects are hard to measure quantitatively for real images, we can see that the derivatives

look much like one would expect. The horizontal edges almost disappear with the a, filter

and they show progressively more variation for increasing differentiation order Q9y,yy.
The smoother parts are progressively flattened.

Fig. 13 shows an isolated edge smoothed by the Green function (solid line) and a

Gaussian. The Green smoothing correctly represents the top of the edge but needs some

distance until it clings to the straight sides. This can be expected from a flexible plate

that one tries to fit over the edge. The Gaussian smooths the edge away, consistent with

a dissipating temperature gradient. Clearly both filters in their simple form would better

be used on smoother parts of the image. A subsequent paper will deal with cost functions

whose factors adapt locally to the prope-ties of the image, so that a will get smaller as the

filter gets closer to the edge.

9. Conclusion

We have derived filters for smoothing and differentiation based on the principle of minimal

curvature of surfaces, on rectangular grids. This principle is based on the regularization
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theory that provides reliable stabilization of noisy or insufficient data. The derivation was

numerical for the discrete case and analytic for the continuous approximation.

One can use certain parameters to control the degree of smoothing, unlike least square

fitting, which is obtained as a special case. The filters turn out to have some general

similarities to the Gaussian but they preserve some frequencies better than the Gaussian.

The filtered data can be used both as image values and derivatives at the pixels,

and as factors that multiply spline functions interpolating between the pixel,. The latter

capability is particularly useful for sparse data. Other methods need to solve a large system

of equations for these interpolation factors.

For irregular data with varying weights no simple filter method is applicable and a

whole system of linear equations must be solved. The direct solution method we described

is particularly stable and efficient for this purpose.
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Figure Captions

Fig. 1. Enumeration schemes for local basis functions

Fig. 2. Cubic Hermite splines

Fig. 3. Smoothing filters: minimal-curvature (solid line) and Gaussian
Fig. 4. Differentiation filters: mininial-curvature (solid line) and Gaussian

Fig. 5. Fourier transform of the smoothing filters

Fig. 6. Fourier transform of the differentiation filters

Fig. 7. Discrete minimal-curvature filter for smoothing

Fig. 8. Discrete minimal-curvature filter for differentiation

Fig. 9. Smoothed image

Fig. 10. x-derivative of image

Fig. 11. y-derivative of image

Fig. 12. Second y-derivativc of image

Fig. 13. Edge smoothing

25



i=ll i=12 i=15 i=16

SY = 1 0 0

i29 i=10 i=13 i=14

sy=O 0 0 0 0

i=3 i=4 i=7 i

i=1 i=2 i=5 i=6
Sy = 0 0 0 0

I II II II
y 0

mx= I r = 2

Figure 1



.0.

/\

/\
/i

/7

/

//'

/ N N\

/ '\

-0.2

CUBIC HERMITE SPLINES

Figure 2



0

=-2 5i " ,

SMOOTHING FILTERS: MINIMAL-CURVATURE AND GAUSSIAN

Figure 3



-2.

2.5 2.5

-0 .

DIFFERENTIATION FILTERS: MINIMAL-CURVATURE AND QAUSSIAN

Figure 4



3

FOURIER TRANSFORM OF SMOOTHING FILTERS

Figure 5



0. 75

FOURIER TRANSFORM OF DIFFERENTIATION FILTERS

Figure 6



r
1. 1

2 0

____- 1- loI.40

DISCRETE MINIMAL-CURVATURE FILTER FOR SMOOTHING

Figure 7



0. 5

2.0 10.0

0K

-0.5

DISCRETE MINIMAL-CURVATURE FILTER FOR DIFFERENTIATION

Figure 8



Figure9

Figiire 10



Figure 11

Figuire 12



iO5 .5.

I I I I 
I 

I I I I/ 

I I I

....
0

/ / / -
x -

Ti
//\

/ / 

'\

-S . 0 /0 01 238 
9 \

//./

/\
//

/ 
/

///

/

EDGE SMOOTHING

Figure 13



SECUKIl1y CLASSIFI(ATKiN OFTHIS PAGE

REPORT DOCUMENTATION PAGE
a REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

-INCLA3 IFIED N/A
2a SECURIT V CLASSIFICATION AUTHORITY 3 DIST RIBUTO)N / AVAILABILITY OF REPORT

N/A Approved for public release; diStniobu-io
2b DECLASSIFICAT;ON DOWNGRADING SCHEDULE unl imited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

a NAM?- OF PER URMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

(If applicable) Department of the Navy
Jrniversit, of tMaryln N/A (Iffice of the Chief- of Nav/al &PcrrL

6( ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

,Center 'or A"utomation Research80NotQunySre

College Park, MD 20742-3411 _______ Arlinaton. VA 22217-5000
8a NAME OF FUJNDING/ SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION UiE

ORGANIZATION Dept. of the Navy I(If applicable)

Of. Tief of Naval Research ________ N00014-89-J-1854
8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROG)RAM PROIECT -TASK IWORK UNIT

81C North Quincy Street, Code 1513:BSM ELEMENT NO INO NO ACCESSION NO

_Sri ington, VA 222 17-5000
1t TITLE (Include Secjrtj Cassification)

1AISE SIM0STHING AND DIFFERENTIATION WITH MINIMAL-CURVATURE FILTERS ___________

2 PERSONAL AL'j H0R(S;

13a YPE O RI-PURT ~ bTIME COVERED 14 DATE OF REPORTF (year. Month, Day) 115 PAGE COUNT

T----,n i -a 1 FROM ___ TO ILA Novemher 1989 I 3
6 SUPPLt ME NTARY NOTA1(ION

COSMAi CODES 18 SUBJECT TERMS (Continue on rev'erse if necessary a'd identify by biock number)
liELD GROUP SUB-GROUP

IQ ABSTRACT (Continue on rev'erse if necessary aria identify by block n, iber)
TP- undmental Qrolblem of smoothing and differentiating of noisy- images ha-- tten [cre-

apooacedin two different ways: 1) Minimization of a smoothness luncti-)nal, a
w,,-]" l ~l understood procedure but one that involves the solution of a ver',y' large

-riat 1ons involving all the pixels ot the image, for eaco image. Ise oif smii
*-r~ l/~r itr for local smoothing. The process i s computat!,Ianall. Thea: I

q; C i-1 hr ind not verb realiable. Thi1s paper of fers a3 wia, to comb ine tk advt tages
~ -crs. We construict general filters for local wind.ows of th e imagje, deriv. d

x m i zOiZI f ln of smoothness or "regularilzation" theory,, In this aytho, the;,r'c~llv
r'rrim nimi 7ation process becomes suitable for practic-al imp lemetation, 'os 1 ,-' ra I

*1 i. d -r *, rcnadily adaptaule to local image properties FitrIo oe eibedn'
tie ir- -Ilto King derived.

20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT St( (,Pil Y 5, AOSjjj( 'kT IN

UNCLASSIFIED/UNLIMITED [Il SAME AS RPT [A DTIC lISER 1sJIICLASS- IF I ED
22a NAME OF RESPO'NSIBLE INDIVIDIIAL 2.b TEPIIO0NF (Include Area, Code) 1 21 OFFICE SYMBOL

DD FORM 1473,.84 MAR 83 APR editson may be used JfltI extaused SECIIJRITY CI ASSIFICATICIN OF TIS PAGE-
All other editonS are ,)bsolte- _ _

uLNC L 6 sI F I E 1)


